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LOCALIZE AND IDENTIFY THE GRAVITY SENSING

MECHANISM OF PLANTS

I. Description of research:

Our intent is to localize and identify, at the cellular

level, the machinery by means of which a plant transduces

the gravity stimulus into a growth response. To accomplish

this difficult task we adopted a reductionist approach and

separated the plants gravity response into: a) perception;

b) transduction; and c) asymmetric growth.

We early decided not to study, c) asymmetric growth,

since growth is too complex a subject for attaining a molec-

ular level understanding of the tropic response. Progress

in: a) perception and b) transduction; seemed possible.

However even here a further reduction of scope seemed neces-

sary. The fact that a plant grows unequally on the lower

side of a horizontally placed stem means that there must be

asymmetric distribution of some of the chemical substances

involved in the growth response. Thus, it is possible to

rephrase the question of transduction into the simpler ques-

tion: how can a plant attain an asymmetric distribution of

one of the chemicals involved in growth? The three most

prominent and likely chemical contenders were potassium,

calcium, or, the growth hormone, indole-3-acetic acid (IAA).

This laboratory had two decades of experience in the analy-

sis, chemistry, and metabolism of IAA and its adducts and so

the asymmetric distribution of IAA was a reasonable choice

(1) .

Under results we will describe how this question of--

how does a plant attain an asymmetric distribution of IAA-

has led us to a fairly complete understanding of the trans-

duction of the gravity stimulus (b above) and led to an

interesting surmise regarding gravity perception (a above).
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II. Accomplishments: (References 1 to 12 are listed at the

end of this section. Higher numbers refer to publications

from this laboratory and are listed under Publications at

the end of this report.

a) PotentiaA-qatinq theory: We must treat this accom-

plishment first since much of what follows has been guided

by this theory. We knew that the sequence of events follow-

ing a gravity stimulus was (172,184,192,203,212,223,

233,240,242,253):
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Fig. 1. A diagrammatic representation of the Potential Gating Theory showing the postulates of how an asym-
metric distribution of IAA might occur following a tropic stimulus. The mechanism emphasizes transport of

• IAA and not de novo synthesis of IAA and encompasses portions of the original Went-Cholodny theory. (l) In-
dole-3-acetyl-myo-inositol (IAInos), the storage and transport form of IAA in Zea mays, would leave the en-
dosperm and enter the vascular stele of the mesocotyl. (2) At some point in the stele, the IAInos is hydrolyzed
to IAA. (3) The IAA and/or IAInos moves to the coleoptile tip and the coleoptile-mesocotyl node. (4),(5) The
central stele has no apoplastic communication with the surrounding cortical ceils and the only means of egress of
IAA from the stele and into the cortex plus epidermis is through the plasmodesmata. The channels in the plas-
modesmata are gated by the membrane potential into an open position (4) or a closed position (5). The so<ailed
lateral migration of IAA would be attained by selective movement through the open channel. (6) In the cortex
plus epidermis, the IAA commits the growth promoting act and is, in turn, oxidized to oxindole-3-acetic acid
(OxIAA). (7) IAA not used immediately in growth may be reconjugated as an IAA ester, such as IAInos, that
is not active in growth promotion but may later be hydrolyzed to yield free IAA. Asymmetric growth,
characteristic of the tropic response would ensue owing to the asymmetric distribution of IAA and to the
subsequent, or simultaneous, cascade of ion movements leading to growth.



i) gravity stimulus>>>

ii) membrane depolarization (within 8 sec)>>>

iii) asymmetric distribution of IAA (within 3 min)>>>

iv) asymmetric distribution of calcium (about 5 min)>>>

v) asymmetric growth (within i0 minutes)>>>

The theory resulted from asking the question--how can

an electrical perturbation, such as a membrane depolariza-

tion, ii) above, result in an asymmetric distribution of a

chemical such as IAA (iii above)? Briefly stated the theory

is (212,233,253):

i) The gravity stimulus is perceived by an unspecified

mechanism;

2) The stimulus causes membrane depolarization;

3) Membrane depolarization results in opening and/or

closing transport channels between the conductive tissue and

the target tissue;

4) IAA flows through the open channels into the corti-

cal tissue target and is prevented from moving through

closed channels;

5) The asymmetric hormone distribution causes asymmet-

ric growth and thus the righting response;

6) The plant grows back into its normal vertical orien-
tation and free IAA levels returned to normal.

Figure 1 (253) presents a diagrammatic representation

of the Potential-Gating Theory. A test of this theory is

underway as part of a flight experiment NAG 2-362.

b) Asymmetric Cfree plus ester) IAA distribution:

Mrs. Aga Schulze early discovered (219) that the vascu-

lar stele of a young corn seedling could easily be removed

from the mesocotyl leaving pure cortical tissues uncompli-

cated by vascular conductive tissue. We also early found

that the stele contained mainly free IAA whereas the cortex

contained mainly ester IAA (2, 262). Mrs. Schulze also

found that both free and ester iAA (that is the tot_l IAA of

the cortex became asymmetrically distributed in the cortex

within 3 min following the gravity stimulus (184,240). We

had early postulated that the gravity stimulus caused a

change in ratio of free to ester IAA thus resulting in more

free IAA (3). We had to discard this postulate since .both
free and ester IAA increased in the lower cortex of a hori-

zontally-placed plant (eg. 240,253). A change in the dis-

tribution of total IAA had to involve either transport of

IAA from a source such as the seed, or de novo synthesis of

IAA.

c) De novo synthesis of IA_:

To distinguish between transport and/or de novo biosyn-

thesis of IAA to account for the "extra" IAA in the lower

cortex of a horizontally placed seedling it was necessary to

determine whether de novo biosynthesis of IAA did in fact



occur. To test for de novo aromatic biosynthesis we chose a

method the would detect IAA synthesis without prejudice as

to the biosynthetic route. Kernels were imbibed in and

grown on 30% D20. If the indole ring of IAA was synthesized

deuterium would be incorporated into the indole ring and

this could be detected by mass spectrometry. Mr. Philip

Jensen performed this experiment with the results shown in

Table I (225,238,247). As can be seen, there is no deu-

terium incorporated into IAA during the 7 days of this ex-

periment. By contrast there is incorporation of deuterium

into tryptophan. Subsequent studies by means of high field

NMR (247) showed the deuterium to be present in position 6

of the benzenoid ring and possibly in 5 and 7 but not in 4.

TABLE I Incorporation of deuterium into indole-3-acefic acid and tryptophan by Zea mays grown on H20 or
30% I)20 for 7 days in the dark. M/z= 130 is base peak for both methyl IAA and methyl monoacetyl trypto-
phan, the two derivatives used here. It represents the quinolinium ion resulting from cyclization of the the
methyl indole fragment.

Percentage of molecules at the indicated mass

Control 30% D20

Tryptophan
m/z 130 89.9 43.8
m/z 131-136 I0.I 56.2

IAA .: -,::ii
m/z 130 89.9 90.0
m/z 131-136 I0.I 10.0 ""i;;:'!!_!!_'_!:_

We conclude that tryptophan is being biosynthesized in

a 7 day old germinating corn seedling but IAA is not being

synthesized. Thus, de novo synthesis of IAA cannot account

for the IAA asymmetry.

d) Asymmetric transport of IAA:

It was important to visualize the seedling plants as

separated into transport domains and to understand how the

domains were connected. The first such attempt (194,197,204

) was made by Mrs. Schulze utilizing the polyanionic sul-

fonic acid dye, light green. So strong an acid could never

be protonated at a physiological pH and thus would be ex-

cluded from the symplast and be confined to apoplastic space

for transport. Professor Bernard Epel made further, more

detailed, studies and concluded that transport of dye

through the mesocotyl was apoplastic and since none of the

dye moved from stele to cortex there could be D_Q apoplastic

communication between stele and cortex. By contrast, acetyl

carboxyfluorescene (a known symplast indicator), and IAA

move from stele to cortex, IAA with greater facility than

carboxyfluorescene (249,250 and In Press). Epel concluded

there was no apoplastic communication between the stele and

cortex of the mesocotyl. Since the interface between stele



and cortex is suberized. Thus, the only communication

between stele and cortex are the plasmodesmata which connect

stele and cortex throuqh the endodermal barrier.

We conclude that the tarqet of the aravitv stimulus

must be some sort of qatinq mechanism located in the Dlas-

modesmata that connect the vascular ste_e to the GQrtex plus

epidermis that surrounds the stele.

e) The potentia_ difference between stele and cortex:

There are innumerable studies of bioelectric potentials

in plant tissues dating back to Cholodny (4), Brauner (5),

Lund (6) and Tanada (7). However, it was the recent studies

of the Siever's group (8) examining membrane potentials

which attracted our attention. They had shown a marked

change in membrane potential within 8 seconds after a posi-

tional change in a plant root. It was this observation, and

particularly the work of Tanada, which made us ask the ques-

tion: How can an electrical potential cause an asymmetric

distribution of a chemical compound? Clearly, it was not

simply an electrophoretic movement of compound since

Momonoki in our laboratory had shown that not only IAA but

IAA ester and even glucose-the two later being non-charged,

neutral compounds not subject to electrophoretic migration,-

became asymmetrically distributed (232A). We knew of the

existence of voltage-gated gap junctions (9) and it was this

knowledge that led us to postulate that the transport chan-

nels for IAA in the plasmodesmata passing from stele to

cortex were voltage-gated (203,204,212,240,253).

Dr. Mark Desrosiers began a series of experiments at-

tempting to determine the relationship between the potential

of the stele and the potential of the IAA target cells lying

in the cortex and surrounding epidermis. He early deter-

mined that a small controlling voltage of only 0.6mV per

cell with the wrong polarity could stop the growth of cells

having an endogenous membrane potential of 100mV per cell.

Thus, as is shown in Fig.2 five volts applied to an 8 cm

section of tissue inhibits growth 90% if the tip of the

plant is made positive relative to the roots and causes no

inhibition is the tip of the plant is made negative (229).

A striking chemical observation was made by Schulze and

Desrosiers in that this same small controlling voltage

caused an increase in ester IAA accumulating in the stele

(228). If IAA can not leave the stele and enter the corti-

cal cells, it is possible this could result in the growth
inhibition observed.
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FIG. 2 Growth rate in millimeters per hour of 4-d, dark-grown corn

seedlings' shoots as a function of time and of the magnitude and polarity

of a voltage applied for 4 h. The electrical potential was applied between

2 and 6 h to the shoots with the apical tip at negative (A) or positive (@)

potential with respect to the base of the shoot or with no potential

applied, control (O). Each point is the average of 30 independent meas-

urements.

Most recently, Dr. Desrosiers has studied the potential
difference between the cells in the stele and the cells in

the cortical tissues (255). For this purpose a platinum

electrode is inserted into the stele and a second platinum

electrode inserted into the cortical tissues. By means then
of a very high quality electrometer it was possible to show

that a change in the orientation of a small piece of stem
tissue from a vertical orientation to a horizontal one was

enough to cause changes in potential difference of almost

150 mV as shown in Fig. 3.

We conclude that the effects of an applied potential as

well as chanqes in endoqenous potential between stele and

cortex are those predicted from the potential qatinq theor¥.



Figure 3
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f) There is lastly the matter of the metabolism, and

particularly esterification, of IAA in the cortical tissues

and the source of the free IAA in the stele. To this end we

have continued our studies of the metabolism of IAA financed

primarily by NSF funds. Dr. Kowalczyk and Mr. Maciej Pawlak

have purified the enzyme catalyzing the synthesis of l-0-

IAA-glucose to homogeneity and prepared antibodies to this

enzyme (230,231,251). Since IAGIu is the first compound in

the series of esters formed in Zea mavs seedlings, the en-

zyme catalyzing this reaction is likely to be a control

point enzyme. The reaction catalyzed is:

IAA + UDPG < ..... > I-0-IAGIu + UDP (i)

It is our intention to clone this enzyme and ultimately to

prevent the expression of this reaction so as to determine

the effects of the failure of a plant to synthesize ester

conjugates and thus control levels of free IAA.

Of equal interest has been the reactions that lead to

the production of free IAA from the IAA-m_y_o-inositol found

in the kernel. Dr. Kowalczyk, Mr. Jacek Kesy, and Mr.

Maciej Pawlak have found the following reactions

(244,245,251):
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and:

and:

I-0-IAGIu <..... > 4, 6-0-IAGIu (2)
I-0-IAGIu + m_y_o-inositol ..... > IAInos + glu (3)

4, (6) IAGIu + HOH .... -> IAA + Glu (4)

IAInos + gluc <..... > 6-0-IAGIu + inositol (5)

These reactions, acting in consort are capable of pro-
viding the shoot with a source of IAA by transport and hy-
drolysis of IAInos since IAInos is a major storage form of
IAA in the kernels. Of possible physiological significance
is the fact that the enzyme catalyzing reaction (i)
cofractionates with enzymes catalyzing the hydrolysis of
both I-0-IAGIu and 6-0-IAGIu as shown in Fig. 4.

We conclude that the enzymes found and characteriz.ed in

this laboratory will catalyze the reactions necessary to

supply IAA to the young growing shoot and to restore

hormonal balance followinq the troDic resDonse.
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Figi 4. Chromatography on DEAE-Sephacel of the IAGlu hydro-

lase and tAGlu synthase not bound to a Blue-Sepharose column. The

Proteins not bound to Blue Sepharose comprised the bulk of IAGlu

hydrolase activity and were fLJrther separated on a DEAE-Sephacel

column using a gradient of 0 to 0.2 M .NaCl (_1,). IAGlu hydrolase

activity was determined by measuring theappearance of free IAA (IZ])

or.free glucose (I). IAGlu synthase activity ;(O) and proteins (O) Were
measured as described in "Materials and Methods." i

g) Perception of the qravit_y stimulus:

Our work has not been directly concerned with the mech-

anism by means of which a plant can detect the gravity vec-

tor. However, owing to some work by Professor Christos

Summerville in this department, some important conclusions

can be made which are relevant to the Potential Gating The-

ory. Casper and Summerville (i0) prepared a mutant of

ArabidoDsis lacking the enzyme phosphoglucomutase in the

chloroplasts. Thus, this mutant can not produce the dense

amyloplasts allegedly involved in gravity detection. The

surprising thing is that the mutant is almost normal with

respect to the gravity response. There has been some dis-

pute as to whether the response is normal or only nearly

normal (II) but that really misses the point that a plant

lackinq dense starch qrains can still respond to the grav_

8



stimulus. We must conclude that plants have multiple gravity

detecting mechanisms and, of course, this is not surprising.

Both light and gravity are all pervasive stimuli and one

might expect multiple detection mechanisms for gravity just

as there are multiple light detection mechanisms.

So we may surmise the following mechanisms for the de-

tection of gravity by plants:

i) a falling heavy body such as a statolith may be used

if available;

2) stretch activated channels such as studied by

Pickard (12) and postulated in the Solion model previously

presented by this laboratory (194,212);

3) we postulate a direct interaction between the grav-

ity field and the dipole of the plant (212). If one visual-

izes each cell of the plant as a small dipole and then one

envisages each small dipole to be stacked so as to make a

large, highly polarized structure, it seems possible that

the movement of this structure in the gravity and the geo-

magnetic fields of the earth may itself serve as a gravity

sensing mechanism.

We conclude that the plant possesses several aravitv

sensinq systems any one of which cad _ead to membrane depo-

larization and _he resultant gatinq that leads to an

asymmetric distribution of the plant q_owth hormone, IAA.

III. Siqnificance of the accomplishments:

The significance is really three fold:

First, we have learned a great deal concerning the

mechanisms by means of which a plant can control the amount

of growth hormone (IAA) in its tissues. This has been an

objective of this laboratory for many years and we feel it

will be of great importance in agriculture as more subtle

means of plant growth control by means of growth regulating

chemicals are devised. If we know how a plant controls hor-

mone levels then we should be able to control those same

control mechanisms.

Second, the ability to grow plants in space will bene-

fit by knowledge of the plants control mechanisms. From the

experiments provided here and those provided by our flight

experiment, we are reasonably certain that the plant is

plastic enough to do well in micro-gravity providing only

that a substitute vector for the gravity vector can be pro-

vided. Probably a potential field should serve in lieu of

gravity for orientation of root growth.

Third, we may learn something of gravity itself. Cer-

tainly we are learning how gravity interacts with a living

organism.

9
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